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Abstract5

An accurate representation of permeability anisotropy is needed to correctly model6

the rate and direction of groundwater flow. We develop a wavelet analysis tech-7

nique that can be used to characterize principal directions of anisotropy in both8

stationary and non-stationary permeability fields. Wavelet analysis involves the in-9

tegral transform of a field using a wavelet as a kernel. The wavelet is shifted, scaled,10

and rotated to analyze different locations, sizes, and orientations of the field. The11

wavelet variance is used to identify scales and orientations that are dominant any-12

where in the field. If the field is non-stationary, such that different zones of the field13

are characterized by different dominant scales or orientations, the wavelet variance14

can identify all dominant scales and orientations if they are distinct. If the domi-15

nant scales and orientations of different zones are similar, the wavelet variance only16

identifies the dominant scale and orientation of the primary zone. In this paper, we17

present a combined wavelet analysis and filtering approach to identify all dominant18

scales and orientations in a non-stationary permeability field. We apply the method19

to laboratory-collected permeability data from Massillon sandstone.20
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INTRODUCTION22

Porous medium properties, such as permeability, are often spatially variable23

and anisotropic. In a layered porous medium, permeability varies with direc-24

tion, with the highest and lowest permeabilities found in the directions paral-25

lel and perpendicular to layering, respectively. These directions are called the26

principal directions of anisotropy.27

Fluid flow in porous media is described by Darcy’s law, given by28
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where qx and qy are components of specific discharge in the x and y directions,30

respectively, ρ is the fluid density, g is the gravitational constant, µ is the31

fluid viscosity, kij is the i,jth entry of the permeability tensor, and ∂h/∂x and32

∂h/∂y are the hydraulic gradients in the x and y directions, respectively. The33

components of the permeability tensor are given by (Bear, 1972)34

kxx =
k‖ + k⊥

2
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where k‖ is the average permeability parallel to layering, k⊥ is the average40

permeability perpendicular to layering, and θ is the orientation of layering,41

which we call the dominant orientation. If the assumed value of the dominant42

orientation of the permeability tensor is incorrect, the magnitude and direc-43

tion of the specific discharge from (1) will also be incorrect, with errors in44

magnitude of up to 30% and errors in flow direction of up to 45◦ (Anderman45

et al., 2002). The errors increase as the anisotropy ratio, k‖/k⊥, increases.46

Several studies demonstrate the importance of an accurate representation of47

aquifer anisotropy. Anisotropy was shown to have significant effects on the48

patterns of groundwater seepage from lakes (Genereux and Bandopadhyay,49

2000), on groundwater travel times in sedimentary fractured rocks (Burton et50

al., 2002), on seepage in bog peat (Beckwith, Baird, and Heathwaite, 2003),51

and on the migration processes of infiltrated stream water to a partially pen-52

etrating well (Chen and Chen, 2003).53

In this paper, we present a method for identifying dominant orientations in54

a non-stationary permeability field that exhibits anisotropy. We consider the55

class of non-stationarity in which the permeability field contains zones with56

different dominant orientations and scales, but within a given zone, the prop-57

erties are stationary. We assume that point measurements of permeability are58

isotropic, but that adjacent permeability measurements are correlated with59

different correlation lengths in different directions. Thus, the permeability field60

exhibits structural anisotropy.61

Two methods that have been used to determine dominant orientations are di-62

rectional variograms and anisotropic wavelet analysis. A directional variogram63

identifies spatial correlation by estimating the variability in permeability as a64
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function of the separation distance between measurements and of the relative65

orientation of the separations. The dominant orientation is the direction that66

exhibits correlation through the longest separation distance (Isaaks and Sri-67

vastava, 1989). Tidwell and Wilson (2000) use variograms to quantify spatial68

variability in permeability measurements from a block of Massillon sandstone.69

The sandstone exhibits layering of bounding surfaces with low permeability70

that separate cross-stratification sets that have higher permeability. A two-71

dimensional variogram identified the dominant orientations of each rock face.72

Neupauer et al. (2006) developed a wavelet analysis approach to identify dom-73

inant orientations of an anisotropic permeability field. In anisotropic wavelet74

analysis, an integral transform is performed on the permeability data using an75

anisotropic kernel. The largest value of the integral transform occurs when the76

orientation of the kernel matches the dominant orientations of the permeabil-77

ity field. If the permeability field is non-stationary, with different dominant78

orientations at different locations, the method of Neupauer et al. (2006) iden-79

tified all dominant orientations only if the dominant orientations are distinct.80

If the dominant orientations are not distinct, the method only identified the81

primary (most dominant) orientation, while secondary orientations could not82

be identified.83

In this paper, we enhance the wavelet analysis method of Neupauer et al.84

(2006) to develop a method that identifies both primary and secondary ori-85

entation in a non-stationary, anisotropic permeability field. This method uses86

a combination of wavelet analysis and filtering. The method has been de-87

veloped for two-dimensional, uniformly-spaced permeability data sets. In the88

next section, we present wavelet analysis theory, and we introduce the filtering89

procedure. In the subsequent section, we illustrate the new combined wavelet90
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analysis and filtering method using two-dimensional synthetic data sets. Fi-91

nally, we apply the method to Tidwell and Wilson’s (2000) permeability data92

from Massillon sandstone.93

METHODOLOGY94

The methodology used to implement wavelet analysis on a two-dimensional95

field is explained in this section. We present general wavelet analysis theory,96

followed by our specific procedure for identifying dominant orientations in a97

non-stationary random field.98

Theory99

The continuous wavelet transform of a two-dimensional field, f(x), is given by100

(e.g., Farge, 1992)101

W θ(a,b, θ;L) =
∫

f(x)ψ∗
a,b,θ;L(x)dx, (5)102

where W θ(a,b, θ;L) is the wavelet coefficient, ψa,b,θ;L(x) is the scaled, shifted,103

and rotated two-dimensional wavelet, a is the scaling factor, x = (x, y) is the104

spatial domain, b is the shift vector on the spatial domain (x, y), θ is the105

angle of orientation of the wavelet relative to the +x axis (positive θ is in the106

counterclockwise direction), L is the anisotropy ratio, defined as the ratio of107

the scaling factor in the direction perpendicular to θ to the scaling factor in108

the θ direction, and the superscript asterisk denotes the complex conjugate.109

The limits of integration are −∞ to +∞ unless otherwise stated. The scaled,110
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shifted, and rotated wavelet is given by (Farge, 1992)111

ψa,b,θ;L(x) =
√

det(A)ψ(AC(x− b)), (6)112

where ψ(x) is the mother wavelet, det(A) is the determinant of the matrix A,113

and A and C are anisotropy and linear transformation matrices, respectively,114

given by115

A =
1

a
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A wavelet is a function that has unit energy (
∫ |ψ(x)|2dx = 1), a zero mean,119

and is non-zero over a finite region (Farge, 1992). In this work we use the120

Morlet wavelet, defined as (e.g. Farge, 1992)121

ψ(x) =
1√
π
eiko·xe−

1

2
(x·x), (9)122

where ko = [0, ko], and ko > 5.5. We use ko = 2π. Figure 1 shows the real part123

of the Morlet wavelet with the effects of changing the scale (a), orientation124

(θ), and anisotropy ratio (L). Because the wavelet is non-zero only over a125

finite region, the wavelet transform identifies local properties of the field. The126

integral transform in (5) is evaluated for a range of shift parameters, b, a range127

of scale parameters, a, and a range of orientations, θ. Shifting the wavelet in128

(5) results in the wavelet analysis of different regions of the field; scaling the129

wavelet analyzes varying sizes of regions within the field, and rotating the130

wavelet analyzes different orientations of the field. In our analysis, we hold L131
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constant.132

Continuous wavelet analysis transforms a two-dimensional field, f(x), into a133

four-dimensional (a,b, θ) wavelet coefficient. To reduce the dimensionality, the134

four-dimensional wavelet coefficient is integrated over the b domain to obtain135

the wavelet variance, WVf(a, θ), given by (Antoine et al., 2004)136

WVf(a, θ) =
∫

Ω
|W θ(a,b, θ;L)|2db, (10)137

where Ω is the domain of b. Because integration is carried out over the b138

(spatial) domain, all local information is lost; thus the wavelet variance is139

a global measure. Large values of the wavelet variance occur at (a, θ) pairs140

that correspond to scales and orientations that exist anywhere in the field141

f(x). Let us define these dominant scales and orientations as amax and θmax,142

respectively. These are globally-dominant scales and orientations. The locally-143

dominant orientation at each position b ∈ x is the orientation, θ, at which144

the wavelet coefficient achieves its maximum value for a scale of amax, and is145

given by146

θmax(b) = {θ : W θ(amax,b, θ;L) = max(W θ(amax,b, θ;L))}. (11)147

Procedure148

Neupauer et al. (2006) used wavelet analysis to identify dominant orientations149

of permeability anisotropy according to the following procedure:150

(1) Use (5) to calculate the wavelet coefficients for a range of shifts (b ∈ x),151

scales, and orientations, and for a particular anisotropy ratio, L.152

(2) Use these wavelet coefficients in (10) to compute the wavelet variance.153
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(3) Determine the globally-dominant scales and orientations (amax, θmax) by154

identifying the (a, θ) pairs that correspond to local maxima of the wavelet155

variance.156

(4) Identify the locally-dominant orientations for each globally dominant157

scale, amax, using (11).158

If a field contains two or more globally-dominant scales and orientations159

(amax, θmax), the wavelet variance should have local maxima at each globally-160

dominant pair. However, if the (amax, θmax) pair is not sufficiently distinct, the161

wavelet variance may only have one local maximum at an (amax, θmax) that162

corresponds to the scale and orientation of the primary feature (Neupauer163

et al., 2006). To address this situation, we have developed a continuation of164

the procedure to identify (amax, θmax) for a secondary feature. The procedure165

continues as follows:166

(5) If the wavelet variance has only one local maximum, filter out the wavelet167

coefficients that correspond to (amax, θmax) to remove the primary feature168

from the original field.169

(6) Reconstruct the field with the remaining wavelet coefficients. For anisotropic170

wavelet analysis, the field f(x) can be reconstructed from its wavelet co-171

efficients using (adapted from Chui, 1992; Farge, 1992)172

f(x) =
2√
LCδ

∫ π

0

∫ ∞

0

W θ(a,b, θ;L)

a2
dadθ, (12)173

where174

Cδ =
∫∫

ψ̂(u, v)

u2 + v2
dudv, (13)175

where ψ̂(u, v) is the Fourier transform of the wavelet, and u and v are176

transform variables.177
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(7) Repeat Steps 1–4 for the reconstructed field to identify the secondary178

dominant orientation.179

Implementation180

To perform wavelet analysis, the integral transform in (5) is analyzed for a181

range of scales, shifts, and orientations. To reduce the computational burden,182

the integral transform can be evaluated in Fourier space, which eliminates the183

need to integrate over the range of shifts, b. Substituting (6) into (5) gives184

W θ(a,b, θ;L) =
√

det(A)
∫

f(x)ψ∗(AC(x− b))dx. (14)185

The integral in this equation can be written as a convolution, leading to186

W θ(a,b, θ;L) =
√

det(A)f(b) ∗ ψ∗(−ACb), (15)187

where ∗ denotes convolution. The convolution can be evaluated efficiently in188

Fourier space as a product of the Fourier transforms of f(b) and ψ∗(−ACb);189

thus the wavelet transform becomes190

W θ(a,b, θ;L) =
√

det(A)F−1 {F [f(b)]F [ψ∗(−ACb)]} , (16)191

where F and F−1 denote the Fourier and inverse Fourier transforms, respec-192

tively. This equation is evaluated for a range of scales and orientations.193
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EXAMPLE194

In this section we demonstrate the wavelet analysis procedure using two-195

dimensional sinusoidal fields defined as196

zi(x, y) = sin
[

2π

Ti

(x cosφi + y sinφi)
]

(17)197

where φi is the orientation angle (defined as positive in the counterclockwise198

direction, with φi = 0 in the direction of +x), Ti is the period, i denotes the199

case number, and the domain is −5 m< x < 5 m and −5 m< y < 5 m.200

We consider two cases. In Case 1 (Fig. 2A), the field contains two zones with201

sufficiently distinct scales and orientations, given by202

(φ1, T1) =
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. (18)203

We use this case to verify the procedure for identifying locally-dominant scales.204

In Case 2 (Fig. 3A), the field contains two zones with similar scales and ori-205

entations, given by206

(φ2, T2) =


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(30◦, 2 m), x ≤ 1 m

(20◦, 1.6 m) x > 1 m

. (19)207

We use this case to demonstrate the filtering procedure.208

Case 1: Two Zones with Distinct Periods and Orientations209

We use wavelet analysis to identify the scale and orientation pairs that are210

dominant throughout the field z1(x, y) (Fig. 2A). We evaluate (16) for a range211
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of scales (a = 0.2, 0.3, . . . , 4 m) and orientations (θ = 0◦, 5◦, . . . , 175◦), and we212

calculate the wavelet variance using (10). The results (Fig. 2B) show two local213

maxima in the wavelet variance – one at (amax, θmax)= (1 m, 45◦), and one at214

(amax, θmax)= (2 m, 135◦). These (a, θ) pairs represent the globally-dominant215

scales and orientations of the field and are identical to the true scales and216

orientations in (18). Note that since we use ko = 2π in (6), the local maxima217

of the wavelet variance occurs at a wavelet scale amax that is equal to the218

period, T , of the sinusoidal function (Torrence and Compo, 1998; Neupauer219

et al., 2006). For ko 6= 2π, amax is a function of T , but is not identically equal220

to T .221

The local maxima of the wavelet variance identify globally-dominant scales222

and orientations, but they do not provide information about the locally-223

dominant orientations. To identify the orientation that is dominant at each224

location, we use (11) for each of the dominant scales identified above. Figure225

2C shows the dominant orientations at each position for a = 2 m. This wavelet226

scale is equal to the true period (T = 2 m) of the field for x > 1 m. The dom-227

inant orientation for x > 1 m is identified as 135◦, which matches the true228

orientation of the field in this region. For a = 1 m, the dominant orientations229

at each location are shown in Figure 2D. This wavelet scale is equal to the230

true period (T = 1 m) of the field for x < 1 m. For x < 1 m, the dominant231

orientation of the field is identified as 45◦, which matches the true orientation232

of the field in this region. The present method does not identify the location233

of the interface between the two zones with different orientations. This is the234

subject of future work.235
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Case 2: Two Zones with Similar Periods and Orientations236

We use wavelet analysis to identify the scale and orientation pairs that are237

dominant throughout the field z2(x, y) (Fig. 3A). We evaluate (16) for a range238

of scales (a = 0.2, 0.3, . . . , 4 m) and orientations (θ = 0◦, 2◦, . . . , 178◦), and239

we calculate the wavelet variance using (10). The results (Fig. 3B) show one240

local maximum at (amax, θmax)= (2 m, 30◦), which represents the scale and241

orientation of the more dominant (primary) zone of the field, i.e., x < 1 m.242

This zone is more dominant because it covers a larger area of the domain,243

and because it has a larger period. Although the field contains two zones with244

different periods and orientations, the periods and orientations are sufficiently245

similar so that the regions with large wavelet variance values overlap, and246

the region containing the primary (a,θ) pair masks the region containing the247

secondary (a,θ) pair.248

We filter z2(x, y) to remove the part that has a dominant orientation of 30◦.249

We accomplish this by reconstructing z2(x, y) from (12) using only a subset of250

the wavelet coefficients. To choose the subset of wavelet coefficients to use in251

the reconstruction, we select a threshold value of the wavelet variance so that252

the field is reconstructed using only the wavelet coefficients that correspond253

to wavelet variance values that are above the threshold. We use a threshold254

value of 61.5 m4, which was chosen such that 75% of the total wavelet variance255

is above the threshold. Figure 4A shows the wavelet variance of z2(x, y) with256

only values below the threshold wavelet variance remaining.257

Using (12), we reconstruct z2(x, y) using only the remaining wavelet coeffi-258

cients (Fig. 4B). Let us denote this filtered version by z2(x, y). Note that259
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z2(x, y) approximates z2(x, y) for x > 1 m (the less dominant zone); while for260

x < 1 m (the more dominant zone), z2(x, y) ≈ 0. Thus, the primary feature261

of the original field has been removed. Note that the reconstruction is not262

exact near the boundaries of the domain or at the boundaries between the263

two zones.264

Finally, we perform wavelet analysis on z2(x, y) to obtain its wavelet variance.265

The wavelet variance (Fig. 4C) has a local maximum at (amax, θmax)= (1.6266

m, 14◦). This amax is identical to the period of z2(x, y) for x > 1 m, and267

this θmax is approximately equal to the orientation of z2(x, y) for x > 1 m.268

Thus, the combination of filtering, reconstruction, and reanalysis allows us to269

identify the secondary feature of z2(x, y).270

To identify the orientation that is dominant at each location, we use (11)271

for the two dominant scales identified above. Figure 3C shows the locally-272

dominant orientations for a = 2 m, which is the true period for x < 1 m. The273

wavelet analysis procedure correctly identifies the locally-dominant orientation274

to be 30◦ in this zone (x < 1 m). Figure 3D shows the dominant orientations275

at each position for a = 1.6 m, which is the true period for x > 1 m. The276

wavelet analysis procedure correctly identifies the locally-dominant orientation277

to be 20◦ in most of this zone; however, the identified dominant orientation is278

slightly off near the interface between the two zones.279

APPLICATION TO MASSILLON SANDSTONE DATA280

Tidwell and Wilson (2000) collected permeability measurements (Fig. 5A) on281

a 0.94× 0.96× 1.01 m block of Massillon sandstone using a gas multisupport282

14



permeameter. These measurements were taken on a square 50-by-50 grid at283

a spacing of dx = dy =0.0127 m. The 0.622 × 0.622 m grid was centered on284

the block face providing a buffer of over 0.15 m between the grid and edge285

of the block to avoid boundary effects. The Massillon sandstone exhibits a286

series of subhorizontal bounding surfaces with low permeability (spacing of287

0.16-0.22 m; orientation of θ ≈ 0◦; Tidwell and Wilson, 2000) separated by288

cross-stratification sets with high permeability (spacing of approximately 0.03289

m; orientation of θ ≈ −22◦; Tidwell and Wilson, 2000).290

Neupauer et al. (2006) performed wavelet analysis on the Massillon perme-291

ability data, but the wavelet analysis results only identified the bounding292

surfaces, which is a more dominant feature than the cross stratification sets.293

In this section, we use the combined wavelet analysis and filtering technique294

to characterize the dominant orientation of both the bounding surfaces and295

the cross stratification sets.296

We performed wavelet analysis on the Massillon permeability data and cal-297

culated the wavelet variance using (10). We used a range of scales of a =298

3dx, 4dx, . . . , 0.3937 m, and an anisotropy ratio of L = 0.2. (Powell (2004)299

found that L = 0.2 gave the best representation of the dominant orientations300

for these data.) The wavelet variance (Fig. 5B) has one local maximum at301

(amax, θmax) = (0.1819 m, 0◦), which corresponds to the separation distance302

and orientation of the bounding surfaces. We would also expect a local maxi-303

mum at (amax, θmax) ≈ (0.03 m,−22◦), corresponding to the cross-stratification304

sets; however, this maximum is masked by the high wavelet variance values305

corresponding to the bounding surfaces. We implement the filtering method306

to remove the primary feature (bounding surfaces) from the field so that the307

secondary feature (cross-stratification sets) can be identified.308
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We filter the Massillon permeability data by reconstructing the data with the309

wavelet coefficients corresponding to the wavelet variance values below the310

threshold value (4.9 × 10−29 m8, the value that removes 75% of the wavelet311

variance). The wavelet variance (Fig. 6A) from the remaining wavelet coeffi-312

cients shows that the original local maxima is removed. The reconstruction313

of the permeability data from these remaining wavelet coefficients (Fig. 6B)314

shows that the low-permeability bounding surfaces are removed or subdued.315

We perform wavelet analysis on the filtered data set to identify previously-316

masked secondary features. The resulting wavelet variance is shown in Figure317

6C. The wavelet variance has a local maximum at (amax, θmax) = (0.0508 m,−20◦).318

This orientation closely matches the orientation (−22◦) that Tidwell and Wil-319

son (2000) identified in their variogram analysis. Through visual inspection of320

the Massillon permeability data, Tidwell and Wilson (2000) identified the sep-321

aration distance of cross-stratification sets to be slightly less (approximately322

0.03 m) than the results of our wavelet analysis.323

For the secondary dominant scale (a = 0.0508 m), we use (11) to identify the324

locally-dominant orientations (Fig. 6D). Throughout most of the domain, the325

dominant orientations range from -30◦ to 0◦, which matches the dominant ori-326

entation of the cross-stratification sets. Near y ≈ 0.7 m the identified locally-327

dominant orientation is θ ≈ 0◦. This is consistent with the reconstructed data328

(Fig. 6B) in that region, and indicates that the filtering subdued, but did not329

completely remove, the bounding surface in that region. Similar behavior is330

seen near y ≈ 0.55 m for x < 0.6 m. In the lower right corner of the domain,331

the identified locally-dominant orientations are nearly vertical, which matches332

both the original data (Fig. 5A) and the filtered data (Fig. 6B). Since filtering333

only removed wavelet coefficients that correspond to θ ≈ 0◦, in this region334
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where the dominant orientation is θ ≈ 90◦, the filtered data have the same335

dominant orientation as the original data.336

CONCLUSION337

In this paper, we presented a wavelet analysis approach that can be used to338

identify dominant orientations in both stationary and non-stationary perme-339

ability fields. We addressed a class of non-stationarity in which the permeabil-340

ity field contains zones with different dominant orientations and scales, but341

within a given zone, the properties are stationary.342

Wavelet analysis involves the integral transform of a data set using a wavelet343

as a kernel. The result of the integral transform is a set of wavelet coefficients344

that are used to obtain the wavelet variance. Large values of the wavelet345

variance occur at globally-dominant scales and orientations. If a permeability346

field contains two zones with distinct dominant scales and orientations, the347

wavelet variance will have two distinct local maxima, and the dominant scales348

and orientations can easily be identified. If the permeability field contains349

two zones with similar dominant scales and orientations, the wavelet variance350

may only have one local maximum, with the wavelet variance of the primary351

region masking the wavelet variance of the secondary region. In this paper,352

we developed a filtering approach that is used in conjunction with wavelet353

analysis to identify both primary and secondary features.354

In the filtering approach, the original data are filtered by removing all wavelet355

coefficients that correspond to wavelet variance values above a chosen thresh-356

old. The filtered data are reconstructed from only the remaining wavelet coef-357
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ficients, thus eliminated or subduing the more dominant features of the orig-358

inal data. We have obtained reasonable results by using a threshold value359

such that 75% of the wavelet variance is removed. We illustrated the new360

filtering method using laboratory-collected permeability data from Massillon361

sandstone. The Massillon sandstone is characterized by low-permeability sub-362

horizontal bounding surfaces that separate low angle cross-stratification sets363

(Tidwell and Wilson, 2000). In prior work (Neupauer et al., 2006), wavelet364

analysis was used to identify dominant orientations in the Massillon sandstone365

permeability data; however, it was able to identify only the primary feature366

(bounding surfaces). With the new combined wavelet analysis and filtering367

approach, we identified both the primary (bounding surfaces) and secondary368

(cross-stratification sets) features.369
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Fig. 1. Morlet wavelet (real part only). (A) a = 1,b = (0, 0), θ = 0◦, L = 1;

(B) a = 2,b = (0, 0), θ = 0◦, L = 1; (C) a = 1,b = (0, 0), θ = 20◦, L = 1;

(D) a = 1,b = (0, 0), θ = 0◦, L = 1/2.
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Fig. 2. Wavelet analysis of z1(x, y). (A) z1(x, y); (B) Wavelet variance (m4); (C)

Locally-dominant orientations (in degrees) for a = 2 m; (D) Locally-dominant ori-

entations (in degrees) for a = 1 m. The dashed white line denotes the interface

between the two zones. The labels above subplots C and D show the true period

of the field, in the region where the true period matches the scale of the analyzing
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Fig. 3. Wavelet analysis of z2(x, y). (A) z2(x, y); (B) Wavelet variance (m4); (C)

Locally-dominant orientations (in degrees) for a = 2 m; (D) Locally-dominant ori-

entations (in degrees) for a = 1.6 m. The dashed white line denotes the interface

between the two zones.
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